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Summary. The base-cataZyzed H-D exchange of H-C(3) in the endo-Fe(COI monocomplex and the 
end.o,ex~[FeICOl 12 double complex of 5,6,7,8-tetrakis hethy~ene)-2-bicycZo[Z.Z.Zl- 
octanone are hzg 7-y stereoselective. *?l '\, 

The diastereotopic hydrogen atoms c1 to a carbonyl group of a chiral ketone can, in principle, 

show stereoselective keto-enol tautomerism. 132 The preference for axial over equatorial attack 

in the protonation of cyclohexenols was attributed by Corey and Sneen 
3 

to the necessity for 

proper orbital alignment in the enol fragment during protonation. Subsequent work has both 

reinforced and contradicted this interpretation. 
4 

A rate constant ratio k exolkendo of ca 800 

was reported for the direct base-catalyzed exchange of the H2C(3) hydrogen atoms in norborna- 

none 1. 135 Several explanations have been advanced for this stereoselectivity 192 , e.g.: 

(1) torsional effects between H-C(3) and H-C(4) bonds, (2) steric hindrance to endo protonation 

of the enolate, (3) the least-motion principle (equivalent to Corey's and Sneen's hypothesis3 

of maximum overlap between the breaking n-(C-H) bond and the carbonyl TT system) and (4) n-ani- 

sotropy in the enolate intermediate (non-equivalent IT electron density extension between the 

two faces of norbornene6). 

With minor structural modification in the skeleton of 2-bicyclo[Z.Z.Z]octanone, as in 2 - 

and 3, the diastereoselectivity for the H-D exchange at C(3) was lost. In contrast, monodeute- 

ration at C(8) in bicyclo[4.2.21deca-2,4,9-trien-7-one (4) was stereoselective, probably 

because of steric factors.7 

- 

We report the base-catalyzed hydrogen-deuterium exchange reactions 
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of 5,6,7,8-tetrakis(methylene)-Z-bicyclo[Z.Z.Z]octanone (5) and of its irontricarbonyl complexes _ 

5 and 7. As expected, high diastereoselectivity was observed with the eso,endo-double complex - 

6; the less hindered face of the enolate intermediate was deuterated giving 8. TO Our’ Surprise, 

however, the endo monocomplexed ketone 7 was also monodeuterated with high stereoselectivity 

yielding 2. 

5 R=H:6 7 _ - - M = Fe(C0)3 

R=D:8 9 - - 

Ketones 5, fi and 1 were prepared in the following way. Hydroboration/oxidation of the 

endo,ezo-diiron complex 10 gave the corresponding alcohol 11.8 In the presence of a 20-fold - - 

molar excess of trimethylamine oxide, 
9 

11 was oxidized selectively into the monocomplexed 

- alcohol 12 (78 %, acetone, 25', 50 min). Further oxidation of 12 into the uncomplexed 5,6,7,8- - - 

-tetrakis(methylene)-2-bicyclo[2.2.2]octanol was a very slow reaction giving a small amount of 

5 and several products of decomposition. CrO3 oxidation of 11 (pyridine/CH2C12, 20°, 10 min) 

yielded the doubly complexed ketone 6 (64 %). Under the same conditions, 12 furnished the - - 

monocomplexed ketone 7 (65 %). When treated with a ten-fold molar excess of trimethylamine _ 

oxide in acetone (25', 20 min), 6 gave a mixture of the endo-irontricarbonyl complexed ketone - 

7 (50 %) and the uncomplexed ketone 5 (31 %). The selectivity of these irontricarbonyl oxida- - - 

tions is not yet understood. In all cases, the ezo-Fe(C0)3 group is removed more rapidly than 

the endo-Fe(CO)3 group, this was also true for lo. 
10 

When treated in a 1:l mixture of CD30D/CDC13 containing 1 % of anhydrous K2C03, ketone 2 

was monodeuterated into 5 (40°, lh). Prolonged heating of 6 in CD30D saturated with K2C03 or - 

containing 5-10 % of CD30Na did not exchange the second hydrogen atom at C(3) before decomposi- 

tion of 5 (40°, 2 - 4 days). The high diastereoselectivity of the base-catalyzed monodeuteration 

10 R=H:ll+6 12 --r 7 13 -- - - -- 

R=D:14+8 15 -f 9 -- -- 
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6 -+ 8 can be attributed to a steric factor, i.e. protonation of the enolate intermediate occurs 

preferentially from its less hindered face. When treated in 1:1 CD30D/CDCl3 containing K2C03 or 

CD30Na, the endo-complexed ketone 7 gave the monodeuterated ketone 9. The exchange of the second _ 

hydrogen atom at C(3) was also observed; at 35' it occurred ca 100 times more slowly than reac- 

tion 1 -f 9 (by 360 MHz 'H-NMR spectroscopy). The exchange was complete after 16 h in 1:1 CD30D/ _ 

CDC13 with 1 % K2C03, The lithium enolate of 7 generated by treatment with LDA in hexane at - 78‘ _ 71 
gave 9 after quenching with D20." _ 

7 - 

Figure 1: 1 
H-NMR spectra. 

The structures of 5 - 12 were determined by their mode 

of formation, elemental analyses and by spectroscopic 

data." The deuterium content in 8 and 9 was determined - - 

by 360 MHz 'H-NMR (see Fig. 1 for the H2C(3) signals of 

5 & 1. and for the HDC(3) signals of 8 & 9) and mass spec- _ 

trometry. The structure of 10 was established by X-ray - 

cristallography,8 and those of the alcohols 118 and 12 by 
1 
H- and l3 

- - 

C-NMR spectroscopy using Eu(dpm)3 and Yb(dpm)3 

induced chemical shifts, respectively. Reduction of ketone 

6 with LiAlH4 (THF, 20°, _ 15 min) gave the doubly complexed 

alcohol 13 (37 %). The deuterium position in 8 and 9 was - - - 

further confirmed by the following experiments. Hydroboration/oxidation of 10 using NaBD4/BF3 - 

gave 14 which was oxidized into 8 with Cr03. - - Removal of the ezo-Fe(C0)3 group in 14 by treat- 

ment with trimethylamine oxide gave 15 which yielded 9 upon oxidation with Cr03. lJ- - - 

X-ray cristallographic data on the endo-Fe(C0)3 complex 16 
14 

showed that - 
the two faces of the ethano bridge offer the same steric hindrance. If this 

is also the case in 7, the selectivity of the H-D exchange 7 + 9 cannot be 

attributed to a difference in the steric hindrance to protonation of the 
&= 

, 

' 
,y 

enolate intermediate. n-anisotropy of the enolate (pyramidal anion ? 15) due 
ti 

16 
16 

to a field effect of the endo-Fe(C0)3 group 
- 

could be invoked instead. Such 

a hypothesis though requires a rate enhancement for the base-catalyzed H-D exchange of 7 compa- _ 

red with that of 5, but competitive kinetic measurements by 360 MHz 'H-NMR showed very similar 

rates with 5, 6 and 7. Specific solvation effects could be invoked , but again with this hypo- 

thesis alone it is difficult to reconcile the lack of reactivity difference between 5 and 7. _ 

The 'H-NMR spectra of 6 and 7 suggest slightly twisted bicyclic skeletons. The vicinal coupling _ 

constants between H-C(4) and the two H-C(3) are not the same 12 (see Fig. 1). This distortion 

may arise from a dipole-dipole interaction between the Fe(C0)3 and ketone groups. This hypothe- 

sis is consistent with the observation of a slight stereoselectivity (2:l) in the addition of 

CH3MgI to 7. The Grignard _ reagent preferred the ketone face syn to the diene-Fe(C0)3 complex. 

A skeleton distortion could also be invoked to explain the stereoselective base-catalyzed H-D 

exchange in 7. _ 
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Acid-catalyzed H-D exchanges in 6 and 2 could not be studied as these ccmpounds dec-sed 
rapidly under acidic conditions.- 

Characteristics of 2: m.p. 55-56O, w(dioxane) 251(11600), 305(440), lH-NMR(cDc13): 5.38(s,W, 
5.32(s,2H), 4.98(s,4H), 3.75(s,lH), 3.4(t,J=3Hz,lH),2.4(d,J=3Hz,2H). 
Characteristics of 6: m.p. 146-7 O, +M~R(360 MHz, CD Cl ): 3.88(s,lH), 3.63(dxd,J=2.9 & 2.5 

Hz,lH), 2.79(dxd,J=i8 & 2.5Hz,lH), 2.7O(dxd,J=18 & 2.sHz:lH), 2.19(d,J=3Hz,l.H), 2.18(d,J=3Hz, 
IH), 2.08(d,J=3Hz,lH), 1.89(d,J=3Hz,lH),0.72(d,J=3Hz,l.H), 0.64(d,J=3Hz,lH), 0.54(d,J=3Hz,m), 
0.44(d,J=3Hz,lH). 
Characteristics of 1: m.p. 109-llO", 1H -NMR(360 MHZ, CI+): 5.49(s,lH), 5.4l(s,lH), 5.03(s, 
lo), 5.01(s,lH), 3.75(s,l~), 3.52(dxd,J=2.9 & 2.6 Hz, IH); 2.63(dxd,J=18 & 2.9 Hz,m), 2.55 
(dxd,J=18 & 2.6 Hz,l.H), 1.98(d,J=3Hz lH), 1.88(d,J=3Hz,lH), 0.43(d,J=3Hz,lH), 0.27(d,J=3Hz,lH). 
Characteristics of 12: m.p. 91-92O, ltI -NMR(CDX~): 5.22(s,lH), 5.13(s,lH), 4.85(s,m), 4.73 
(s,lH)$ 4.45(m,H-C(F), 3_32(d,J=3Hz,H-C(l)), 3.20(t,J=3Hz,H-C(4)), 2.5O(dxdxd,J=l3, 9 & 3 Hz, 
H-C(3R )), 1.85(d,J=3Hz,2H), 1.8-1.5(m H-C(3S*) & OH), 0.34(d,J=3Hz,lH),O.3O(d,J=3Hz,2H). 
Characteristics of 13: m.p. 183-184O, iH-NMR(CDC1 ): 4.6O(&&dxd,lH), 3.36(d,lH), 3.28(t,Wr 
2.62(dxdxd,lH), 2.1qd,lH), 2.06 & 2.03(d,2H), l.~G(dxdxd,IH), 1.85 & 1.67(d,2H), 0.54 & 0.48 
(d,2H), 0.29 & 0.24(d,2H). 

Details will be given in a full paper. 
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