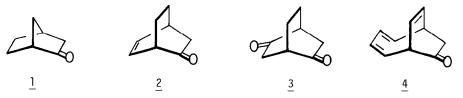
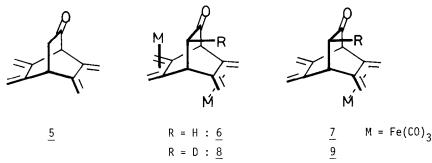
STEREOSELECTIVE CONTROL IN THE BASE-CATALYZED H-D EXCHANGE REACTION OF 5,6,7,8-TETRAKIS(METHYLENE)-2-BICYCLO[2.2.2]OCTANONE IRONTRICARBONYL COMPLEXES

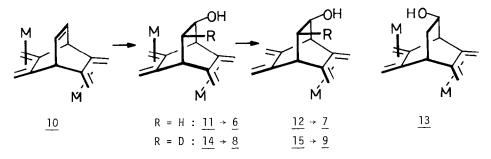

Raphy Gabioud and Pierre Vogel*

Institut de chimie organique de l'Université de Lausanne, 2, rue de la Barre, CH-1005 Lausanne, Switzerland.

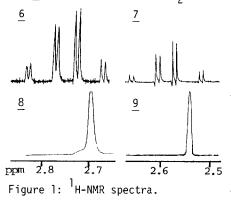

Summary. The base-catalyzed H-D exchange of H-C(3) in the endo-Fe(CO)₃ monocomplex and the endo,exo-[Fe(CO)₃] double complex of 5,6,7,8-tetrakis (methylene)-2-bicyclo[2.2.2]- octanone are highly stereoselective.

The diastereotopic hydrogen atoms α to a carbonyl group of a chiral ketone can, in principle, show stereoselective keto-enol tautomerism.^{1,2} The preference for axial over equatorial attack in the protonation of cyclohexenols was attributed by *Corey* and *Sneen*³ to the necessity for proper orbital alignment in the enol fragment during protonation. Subsequent work has both reinforced and contradicted this interpretation.⁴ A rate constant ratio k_{exo}/k_{endo} of ca 800 was reported for the direct base-catalyzed exchange of the H₂C(3) hydrogen atoms in norbornanone <u>1</u>.^{1,5} Several explanations have been advanced for this stereoselectivity^{1,2}, e.g.: (1) torsional effects between H-C(3) and H-C(4) bonds, (2) steric hindrance to *endo* protonation of the enolate, (3) the least-motion principle (equivalent to *Corey*'s and *Sneen*'s hypothesis³ of maximum overlap between the breaking α -(C-H) bond and the carbonyl π system) and (4) π -anisotropy in the enolate intermediate (non-equivalent π electron density extension between the two faces of norbornane⁶).

With minor structural modification in the skeleton of 2-bicyclo[2.2.2]octanone, as in $\underline{2}$ and $\underline{3}$, the diastereoselectivity for the H-D exchange at C(3) was lost. In contrast, monodeuteration at C(8) in bicyclo[4.2.2]deca-2,4,9-trien-7-one ($\underline{4}$) was stereoselective, probably because of steric factors.⁷ We report the base-catalyzed hydrogen-deuterium exchange reactions

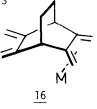


of 5,6,7,8-tetrakis(methylene)-2-bicyclo[2.2.2]octanone ($\underline{5}$) and of its irontricarbonyl complexes $\underline{6}$ and $\underline{7}$. As expected, high diastereoselectivity was observed with the *exo*, *endo*-double complex $\underline{6}$; the less hindered face of the enolate intermediate was deuterated giving $\underline{8}$. To our surprise, however, the *endo* monocomplexed ketone $\underline{7}$ was also monodeuterated with high stereoselectivity yielding 9.



Ketones 5, 6 and 7 were prepared in the following way. Hydroboration/oxidation of the endo.exo-diiron complex 10 gave the corresponding alcohol 11.⁸ In the presence of a 20-fold molar excess of trimethylamine oxide,⁹ 11 was oxidized selectively into the monocomplexed alcohol 12 (78 %, acetone, 25° , 50 min). Further oxidation of 12 into the uncomplexed 5,6,7,8-tetrakis(methylene)-2-bicyclo[2.2.2]octanol was a very slow reaction giving a small amount of 5 and several products of decomposition. CrO₃ oxidation of 11 (pyridine/CH₂Cl₂, 20^o, 10 min) yielded the doubly complexed ketone <u>6</u> (64 %). Under the same conditions, 12 furnished the monocomplexed ketone 7 (65 %). When treated with a ten-fold molar excess of trimethylamine oxide in acetone (25° , 20 min), <u>6</u> gave a mixture of the endo-irontricarbonyl complexed ketone 7 (50 %) and the uncomplexed ketone <u>5</u> (31 %). The selectivity of these irontricarbonyl oxidations is not yet understood. In all cases, the exo-Fe(CO)₃ group is removed more rapidly than the endo-Fe(CO)₃ group, this was also true for <u>10</u>.¹⁰

When treated in a 1:1 mixture of $CD_3OD/CDCl_3$ containing 1 % of anhydrous K_2CO_3 , ketone <u>6</u> was monodeuterated into <u>8</u> (40⁰, 1h). Prolonged heating of <u>6</u> in CD_3OD saturated with K_2CO_3 or containing 5-10 % of CD_3ON did not exchange the second hydrogen atom at C(3) before decomposition of 6 (40⁰, 2 - 4 days). The high diastereoselectivity of the base-catalyzed monodeuteration


 $\underline{6} \rightarrow \underline{8}$ can be attributed to a steric factor, i.e. protonation of the enolate intermediate occurs preferentially from its less hindered face. When treated in 1:1 $CD_3OD/CDCl_3$ containing K_2CD_3 or CD₃ONa, the *endo*-complexed ketone 7 gave the monodeuterated ketone 9. The exchange of the second hydrogen atom at C(3) was also observed; at 35⁰ it occurred ca 100 times more slowly than reaction $7 \rightarrow 9$ (by 360 MHz ¹H-NMR spectroscopy). The exchange was complete after 16 h in 1:1 CD₃OD/ $CDC1_3$ with 1 % K_2CO_3 . The lithium enolate of 7 generated by treatment with LDA in hexane at - 78^C gave $\underline{9}$ after quenching with D_{20} .¹¹

The structures of 5 - 12 were determined by their mode of formation, elemental analyses and by spectroscopic data.¹² The deuterium content in 8 and 9 was determined by 360 MHz $^{1}\mathrm{H}\text{-}\mathrm{NMR}$ (see Fig. 1 for the $\mathrm{H}_{2}\mathrm{C(3)}$ signals of <u>6 & 7</u> and for the HDC(3) signals of <u>8</u> & <u>9</u>) and mass spectrometry. The structure of $\underline{10}$ was established by X-ray cristallography,⁸ and those of the alcohols 11⁸ and 12 by 1 H- and 13 C-NMR spectroscopy using Eu(dpm) $_{3}$ and Yb(dpm) $_{3}$ induced chemical shifts, respectively. Reduction of ketone <u>6</u> with LiAlH_A (THF, 20° , 15 min) gave the doubly complexed alcohol $\underline{13}$ (37 %). The deuterium position in $\underline{8}$ and $\underline{9}$ was

further confirmed by the following experiments. Hydroboration/oxidation of 10 using NaBD $_{a}$ /BF $_{3}$ gave <u>14</u> which was oxidized into 8 with CrO_3 . Removal of the exo-Fe(CO)₃ group in <u>14</u> by treatment with trimethylamine oxide gave 15 which yielded 9 upon oxidation with CrO_3 .¹³

X-ray cristallographic data on the *endo*-Fe(CO)₃ complex 16^{14} showed that the two faces of the ethano bridge offer the same steric hindrance. If this is also the case in 7, the selectivity of the H-D exchange $7 \rightarrow 9$ cannot be attributed to a difference in the steric hindrance to protonation of the enolate intermediate. π -anisotropy of the enolate (pyramidal anion ?¹⁵) due to a field effect of the $endo-Fe(CO)_3$ group ¹⁶ could be invoked instead. Such a hypothesis though requires a rate enhancement for the base-catalyzed H-D exchange of 7 compa-

red with that of 5, but competitive kinetic measurements by 360 MHz ¹H-NMR showed very similar rates with 5, 6 and 7. Specific solvation effects could be invoked , but again with this hypothesis alone it is difficult to reconcile the lack of reactivity difference between 5 and 7. The ¹H-NMR spectra of 6 and 7 suggest slightly twisted bicyclic skeletons. The vicinal coupling constants between H-C(4) and the two H-C(3) are not the same 12 (see Fig. 1). This distortion may arise from a dipole-dipole interaction between the Fe(CO)₃ and ketone groups. This hypothesis is consistent with the observation of a slight stereoselectivity (2:1) in the addition of $CH_{3}MgI$ to <u>7</u>. The Grignard reagent preferred the ketone face syn to the diene-Fe(CO)₃ complex. A skeleton distortion could also be invoked to explain the stereoselective base-catalyzed H-D exchange in 7.

Acknowledgments. We are grateful to Hoffmann-La Roche and Co., Basel, To the "Swiss National Science Foundation" and to "Fonds Herbette", Lausanne, for generous financial support.

References and Notes.

- 1. J. Toullec, Adv. in Phys. Org. Chem. 18, 1 (1982).
- 2. G. Lamaty, in "Isotopes in Organic Chemistry", E. Buncel, C.C. Lee, Ed., Elsevier Scient. Publ. Co., Amsterdam, Vol. 2, Chap. 2 (1976).
- 3. E. J. Corey and R. A. Sneen, J.Am.Chem.Soc. 78, 6269 (1956).
- R. R. Fraser and P. J. Champagne, J.Am.Chem.Soc. <u>100</u>, 657 (1978) and references cited therein;
 R. Fraser and P. J. Champagne, Can.J.Chem. <u>58</u>, 72 (1980).
- 5. G. A. Abad, S. P. Jindal and T. T. Tidwell, J.Am.Chem.Soc. <u>95</u>, 6326 (1973); N. H. Werstiuk and R. Taillefer, Can.J.Chem. <u>48</u>, 3966 (1970).
- 6. S. Inagaki, H. Fujimoto and K. Fukui, J.Am.Chem.Soc. <u>98</u>, 4054 (1976); G. Wipff and K. Morokuma, Tetrahedron Lett. 4445 (1980); W. H. Watson, J. Galloy, P. D. Bartlett and A. A. M. Roof, J.Am.Chem.Soc. <u>103</u>, 2022 (1981); A. A. Pinkerton, D. Schwarzenbach, J. H. Stibbard, P. A. Carrupt and P. Vogel, ibid. <u>103</u>, 2095 (1981); J.-P. Hagenbuch, P. Vogel, A. A. Pinkerton and D. Schwarzenbach, Helv. Chim. Acta 64, 1818 (1981).
- 7. J. B. Press and H. Shechter, J.Org.Chem. 40, 2446 (1975).
- 8. Ph. Narbel, A. A. Pinkerton, E. Tagliaferri, J. Wenger, R. Roulet, R. Gabioud, P. Vogel and D. Schwarzenbach, J. Organomet. Chem. 208, 335 (1981).
- 9. Y. Shvo and E. Hazum, J.Chem.Soc.Chem.Commun. 336 (1974); A. P. Humphries and S. A. R. Knox, J.Chem.Soc.Dalton 1514 (1978).
- 10. Ph. Narbel, R. Roulet, E. Tagliaferri and P. Vogel, J.Organomet.Chem. 194, 103 (1980).
- 11. Acid-catalyzed H-D exchanges in 6 and 7 could not be studied as these compounds decomposed rapidly under acidic conditions.
- 12. Characteristics of 5: m.p. $55-56^{\circ}$, UV(dioxane) 251(11600), 305(440), ¹H-NMR(CDCl₃): 5.38(s,2H), 5.32(s,2H), 4.98(s,4H), 3.75(s,1H), 3.4(t,J=3Hz,1H), 2.4(d,J=3Hz,2H). Characteristics of 6: m.p. $146-7^{\circ}$, H-NMR(360 MHz, CD₂Cl₂): 3.88(s,1H), 3.63(dxd,J=2.9 & 2.5 Hz,1H), 2.79(dxd,J=18 & 2.5Hz,1H), 2.70(dxd,J=18 & 2.9Hz,1H), 2.19(d,J=3Hz,1H), 2.18(d,J=3Hz, 1H), 2.08(d,J=3Hz,1H), 1.89(d,J=3Hz,1H), 0.72(d,J=3Hz,1H), 0.64(d,J=3Hz,1H), 0.54(d,J=3Hz,1H), 0.44(d,J=3Hz,1H). Characteristics of 7: m.p. $109-110^{\circ}$, ¹H-NMR(360 MHz, CDCl₃): 5.49(s,1H), 5.41(s,1H), 5.03(s, 1H), 5.01(s,1H), 3.75(s,1H), 3.52(dxd,J=2.9 & 2.6 Hz, 1H), 2.63(dxd,J=18 & 2.9 Hz,1H), 2.55(dxd,J=18 & 2.6 Hz,1H), 1.98(d,J=3Hz,1H), 1.88(d,J=3Hz,1H), 0.43(d,J=3Hz,1H), 0.27(d,J=3Hz,1H). Characteristics of 12: m.p. $91-92^{\circ}$, H-NMR(CDCl₃): 5.22(s,1H), 5.13(s,1H), 4.85(s,1H), 4.73(s,1H), 4.45(m,H-C(2)), 3.32(d,J=3Hz,H-C(1)), 3.20(t,J=3Hz,H-C(4)), 2.50(dxdxd,J=13, 9 & 3 Hz, H-C(3R^{\circ})), 1.85(d,J=3Hz,2H), 1.8-1.5(m,H-C(CDCl₃): 4.60(dxdxdxd,1H), 3.36(d,1H), 3.28(t,1H), 2.62(dxdxd,1H), 2.19(d,1H), 2.06 & 2.03(d,2H), 1.86(dxdxd,1H), 1.85 & 1.67(d,2H), 0.54 & 0.48(d,2H), 0.29 & 0.24(d,2H).
- 13. Details will be given in a full paper.
- 14. A. A. Pinkerton, G. Chapuis, P. Vogel, U. Hänisch, Ph. Narbel, T. Boschi and R. Roulet, Inorg. Chim. Acta 35, 197 (1979).
- 15. S. Wolfe, H. B. Schlegel, I. G. Csizmadia and F. Bernardi, Can. J. Chem. <u>53</u>, 3365 (1975).
- 16. C. Barras, L. G. Bell, R. Roulet and P. Vogel, Helv.Chim.Acta <u>64</u>, 2841 (1981) and references cited therein.

(Received in France 10 March 1983)